Networked lighting controls are intelligent and programmable systems in which devices communicate to enact control strategies. Despite the extraordinary potential of these systems, adoption has been inhibited by difficulty in reliably projecting energy savings, unfamiliarity among specifiers and, notably, contractors, interoperability and complexity issues and cost. If some of these issues are addressed, the U.S. Department of Energy forecasts penetration of 28 percent in 2020 and 52 percent in 2025 in the commercial building installed lighting base.


Based on utility interest in increasing energy savings by using networked lighting controls, the DesignLights Consortium (DLC) launched an ambitious market transformation program focusing on a specification for networked lighting controls that utility rebates programs can use to qualify products, channel training focusing on contractors and distributors, and providing reliable data to guide energy savings estimates. These efforts are starting to germinate.


The DLC recently released Networked Lighting Controls Specification V2.0, updating its first specification from May 2016. The DLC is recertifying systems for the Qualified Products List (QPL) for Networked Lighting Controls. As of August 2017, 19 systems from 15 manufacturers were listed. U.S. and Canadian utilities use DLC QPLs to qualify lighting products for rebate programs. In 2017, utilities began to either require QPL listing for networked controls or launch new rebates specifically designed around this technology.


V1.0 of the specification included “required” and “reported” capabilities. The DLC required and verified system capabilities including networking of lighting and controls, luminaire and device addressability, continuous dimming, occupancy sensing, daylight harvesting, and high-end trim, and zoning. Additionally, the system must be commercially available and protected by a five-year warranty covering all components in the specification.


Reported capabilities include luminaire-level control (integrated or nonintegrated); time scheduling, load shedding, personal, or plug-load control; localized processing (distributed intelligence); BMS/EMS/HVAC integration; energy monitoring; device monitoring/remote diagnostics; type of user interface; and operational and standby power.


Most notably, V2.0 built upon V1.0 by differentiating interior and exterior systems and identifying specific requirements for exterior systems, as they often have different requirements. V2.0 also allows reporting more system information, such as application program interface, color tuning, start-up and configuration requirements, and security information.


“Advanced and networked lighting control systems have long been a complicated and confusing topic,” said Gabe Arnold, technical director, DLC. “There’s been little standardization, a myriad of options, constantly changing technology, and constantly changing offerings from manufacturers. With this new QPL resource, we are providing a tool to help break through some of that confusion. Whether you are looking to identify simple, room-based wireless systems to use on your retrofit project, a comprehensive system with cloud-based control for an enterprise client, or even just to find a system that can dim a certain type of load, the QPL provides a resource.”


More than 20 rebate programs have adopted the QPL. Of these, about a dozen have developed new programs to promote the technology through a rebate adder. Current rebates typically encourage networked controls to be installed along with LED lighting.


For example, the Mass Save Performance Lighting Program in Massachusetts offers a rebate of $2/watt saved for projects that use DLC-qualified luminaires and exceed energy code. If at least 80 percent of the connected lighting is controlled by a DLC-qualified networked control system, the rebate doubles. Through its Lighting Systems and Sensors prescriptive rebates program, Mass Save offers up to $95/DLC-qualified LED luminaire when combined with a DLC-qualified networked control system.


Rebate programs are expected to grow as the DLC addresses market barriers such as estimating energy savings and a lack of familiarity in the channel, and utilities find effective ways to incorporate networked controls. The DLC was building a database of manufacturer- and utility-reported energy savings for projects in more than 120 buildings and published its first report in September. This database will help utilities confidently project energy savings needed to justify rebates.


Meanwhile, the DLC is developing channel training on networked lighting controls specifically aimed at ECs and distributors. The DLC is planning pilot training with several utilities in 2018 and aims to offer an interactive online training program by late spring.


“All indicators show that what’s coming from connected networked lighting controls in the next few years will be even more disruptive than what occurred with LEDs,” Arnold said. “We encourage distributors and contractors to work with their local utility or rebate program and take advantage of these new resources and prepare for what’s coming.”


To learn more and download the QPL, visit www.designlights.org.